Pascal’s Triangle Shawl to Row 10

Hooray! I’ve knitted my Pascal’s Triangle Shawl all the way to the 10th row!

Now, it’s not finished — I’m going up to 15 — but I can’t resist explaining it already. I think it is SO COOL! And even more patterns are going to pop out as I continue.

My mathematical knitting began with my Prime Factorization Sweater, done in intarsia, with Tahki’s Cotton Classic yarn. It shows the prime factorization of all the numbers from 2 to 100, using a different color for each prime, with 1, the background color, in white.

Later when the internet discovered my sweater, I made a Café Press Prime Factorization T-shirt so anyone can have the color-coded prime factorization of the numbers from 2 to 100.

Now, the trouble with intarsia, is you have to carry all the colors you use in any given row along the back of the sweater. And there are about a million ends to sew in at the end. But a couple years ago, I got a hankering to do something like this again, and it occurred to me that if I used stripes, I could deal with one color at a time. I made a reversible Prime Factorization Scarf, where the thickness of the stripes tells you how many times a factor occurs. It also uses a different color for each prime. This time 1 is black, and there is a black stripe between each successive number. Within each number, there is a two-row stripe for each factor. This is done in Plymouth Encore yarn.

Then my brother, even more mathematically minded than me (if you can believe that!) was going to become a father. His daughter needed a prime factorization blanket! And it occurred to me that it would be far easier to knit the design in Intrelac, using rows of diamonds. I went back to the nice soft Cotton Classic yarn, and white as 1, to be bright for the baby. I used garter rows to show how many factors of each color.

The Prime Factorization Blanket turned out fantastic! But the horrible part was giving it away.

I got to thinking. Intrelac naturally falls into a triangle shape. I instantly thought of something mathematical in the shape of a triangle — Pascal’s Triangle! And I have a special fondness for Pascal’s Triangle, having won a Chalk Talk competition on the Binomial Theorem at a Math Field Day when I was a junior in high school. The numbers in Pascal’s Triangle are the Binomial Coefficients from the Binomial Theorem.

And — here’s where I started getting excited — I knew that there are some fascinating patterns in Pascal’s Triangle. Why not show the prime factorization of each number in the triangle? That would show some of the patterns.

So I began my Pascal’s Triangle Shawl. The first thing I noticed when sketching it out is very cool. Even though the numbers in the middle of the triangle get hugely big quite quickly, they never have any prime factors bigger than the number on the end of the row. So if I take the shawl to row 15, I will only need colors for 1, 2, 3, 5, 7, 11, and 13. To show the prime factorization this way (the same as the blanket), I’ll use 12 x 12 squares, using garter stitch rows to show the factors, with smooth stockinette stitch between factors.

The numbers in Pascal’s Triangle can be calculated two ways. The first way, each number is just the sum of the two numbers above it. Starting with 1.

So the 0th row is 1.

The 1st row is 1 1.

The 2nd row is 1 2 1. We get the 2 by adding the 1 and 1 above it.

The 3rd row is 1 3 3 1.

The 4th row is 1 4 6 4 1.

The 5th row is 1 5 10 10 5 1

The 6th row is 1 6 15 20 15 6 1.

And so on. In the blanket, you can figure out what number each color represents by looking on the edges.

Here it is again:

You can see that I’ve used white for 1. 2 is blue. 3 is yellow. 5 is red. 7 is purple.

You can’t see the garter stitch rows too clearly in that picture, so here’s a close-up of a section:

If you look at the numbers on the bottom edge, 5 is the solid red diamond. Then 6 is next to it, 3 x 2, yellow and blue. Then comes 7, purple. Then 8, which is 2 x 2 x 2, so it’s three sections of blue. Then going out of the picture will be 9 = 3 x 3, so two sections of yellow.

In the center of the shawl, the cool thing is that every diamond represents the sum of the two diamonds that touch its lower edges. See the red and yellow diamond? That would be 5 x 3 = 15. It is the sum of the two diamonds touching its lower edges, which are 10 = 5 x 2 (red and blue) and 5 (red).

Here’s another detailed view, but this time I’ve written in the numbers:

In that picture, see how each number is the sum of the two diamonds below it?

And see how the factorization works? 70, for example, is 7 x 5 x 2, so the colors are purple, red, and blue. 126 = 7 x 3 x 3 x 2, so the colors are purple, two sets of yellow, and blue.

Okay, there are two very cool patterns that I’ve already noticed from looking at the shawl.

First, whenever you’re on a prime row (with a prime on both ends), ALL of the numbers in that row will have the prime as a factor. See how every number in the 3rd row has some yellow? And every number in the 5th row has some red? And every number in the 7th row has some purple?

The reason for that involves the second way you can build Pascal’s Triangle. The rth number in the nth row is the Combination nCr, the number of ways of forming subsets of size r from a set of size n.

Okay, if I’ve just lost everyone, I’ll use examples. The 3rd number in the 5th row can be calculated as 5x4x3/3x2x1 (= 60/6 = 10). The 2nd number in the 7th row is 7×6/2×1 = 42/2 = 21. The 4th number in the 10th row is 10x9x8x7/4x3x2x1 = 10x3x7 = 210. (You always have r factors in the denominator, starting from r and going down 1 each. We call that r! or r factorial. On top, you also have r factors, but they start with n.)

If n is a prime number, all the numbers in that row of Pascal’s Triangle will have n as a factor, and there’s no way it will cancel out with anything in the denominator (except on the very ends when you have 1).

But all that you will notice in the shawl is the color popping up, and you don’t even have to know why. In fact, I planned the shawl by figuring out the sums, and I’d forgotten about the combinations. So I was delighted when I saw that prime factors consistently show up in all prime rows. And then I remembered why.

The second beautiful pattern is related to the sums. The shawl nicely shows the distributive law. If two diamonds next to each other have a factor the same, the diamond above them which they both touch will have the same factor. That’s because ca + cb = c(a + b).

For example, 21 + 35 = 56
and 7×3 + 7×5 = 7(3 + 5) = 7×8

When you combine those two patterns, we’ve got some inverse triangles. Look at the big picture again:

Now focus on the diamonds with red in them. (Red is 5.)

On the row with 5 on the ends, 1 5 10 10 5 1, every number (except the 1s) has red in it. Well, by the distributive law, every number in the next row that touches two of these will have red in it. Those are the three middle numbers on the next row, 15 20 15. The next row will have red wherever it touches two of those, 35 and 35. And finally, we’ll have red in the diamond that touches those two, 70.

The same inverse triangle is going to happen with 7 and purple.

And today I started knitting the 11th row, using pink for 11. So fun! 🙂

Now, I must admit, I’m not particularly pleased with the overall look. The colors looked better in the blanket with rows of white between them. In the shawl, they’re all mashed together and it’s a little bit much with such bright colors. So when I finish this one, I’m planning to make a new one with more subtle differences. I found a wool yarn, Northampton from yarn.com, that has enough slightly different shades of purple. So I’ll be using these colors.

(I still have one more color on order, because the first one I ordered didn’t really go with these.)

The second shawl won’t be quite as good for explaining Pascal’s Triangle, but I think it will be much prettier! I will have to discipline myself to finish the first one before I start it. (I can solve that, I suppose, by using the same needles.)

So there you have it! Pascal’s Triangle knitted into a shawl! I will definitely post again when I finish it!

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.

The Prime Factorization Blanket!

Yes! My Masterpiece is finished!

What is this, you ask? This is a Prime Factorization Blanket!

With colors, it shows the prime factorization of all the integers from 1 to 99.

Here is the entire blanket, laid out flat:

Here’s how it works: Every prime number gets a color. The numbers start in the lower left corner.
I left a space for 0.
1 is the background color, white.
Then the next color is 2, a prime, so it gets its own color, blue.
3 is prime, and gets its own color, yellow.
4 is 2 x 2, so that square is two sections of blue. (You can tell on the blanket that there are two sections.)
5 is prime, and gets a new color, green.
6 = 2 x 3, so that square is part blue and part yellow. And so on.

I’ve got 0 through 9 on the first row, 10 through 19 in the next row, then 20 through 29, and so on through the top row, which is 90 through 99.

To show it more clearly, let’s look at each quadrant. Here’s the bottom left quadrant:

I put in the factors for each color. (After a few colors, I stopped putting in the “x” symbol for times.) I put a reference number on the left side so you can easily see which row. This set has 1 through 4, 10 through 14, 20 through 24, 30 through 34, and 40 through 44.

Now let’s look at the bottom right quadrant:

This picture shows 5 through 9, 15 through 19, 25 through 29, 35 through 39, and 45 through 49. For example, see if you can spot 48, which has a prime factorization of 2 x 2 x 2 x 2 x 3. Or look at 38, right below it, which equals 2 x 19.

By the way, this blanket is for my little niece, the daughter of my brother, who is, if it’s possible, even more of a math geek than me. On the 17th of December, my sister-in-law had an ultrasound, and we learned that the baby would be a girl, so I chose shades of pink for the next primes that came up, 17 and 19!

Now here’s the upper left quadrant:

This picture shows 50-54, 60-64, 70-74, 80-84, and 90-94. Can you find 62 = 2 x 31? Or 94 = 2 x 47? (I have to note that the colors are more distinct in person, and you can tell by the garter ridges how many sections there are of each color.)

And finally, the upper right quadrant:

And this, of course, covers 55-59, 65-69, 75-79, 85-89, and 95-99.

I’m so happy to finish it! The yarn is the same as what I used for my Prime Factorization Sweater, Cotton Classic. This yarn has enough colors (most important qualification), and it’s wonderfully soft — perfect for a baby blanket. I used a lot of leftover colors from the sweater, in fact.

The only really hard part? Giving it away! But I got the *idea* because my brother’s wife was having a baby, so this seems only fair to send it to the baby, as promised. Unfortunately, she lives on the other side of the country — so the one stipulation is they must take *lots* of pictures of her with it!

In fact, I thought of a way to console myself for giving away the blanket. My next project will be a Pascal’s Triangle Shawl!

I tested out, and the shape will work great!

I loved doing the entrelac squares for the blanket — it was much much easier than the intarsia I used on the Prime Factorization Sweater. And it will be easy-peasy to make a triangle instead of a square. I’ll use factors and do Pascal’s Triangle…. More on this to come, you can be sure!

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.

Oh, and don’t forget! If you want your own prime factorization t-shirt or tote bag, you can find them at my Cafepress shop.

My Prime Factorization Scarf

I finished it! Last week, I finished sewing the ends in on my new Prime Factorization Scarf.

The scarf is similar to my Prime Factorization Sweater, using a new color for each prime factor. For the scarf, though, instead of making a grid of squares representing each number, I used two-row stripes for each factor. I separated each number with two rows of black, which represented the number 1 (since 1 times anything doesn’t change the value.)

I like the way the scarf gives the flow of the numbers. You can look closely at the blue color for 2 and watch it repeat. Then notice how the pink color for 3 repeats a little more slowly. And 5 a little more slowly than that. The scarf goes all the way up to 50.

Here are some sections up close. First, this picture shows 1 through 21:

2 is blue.
3 is pink.
4 = 2 x 2, so it’s two stripes of blue.
5 is yellow.
6 = 2 x 3, so it’s a stripe of blue and a stripe of pink.
7 is purple.
8 = 2 x 2 x 2, so it’s three stripes of blue.
9 = 3 x 3, so it’s two stripes of pink.
10 = 2 x 5, so it’s a stripe of blue and a stripe of yellow.
11 gets a new color, green.
12 = 2 x 2 x 3, so it’s two stripes of blue and a stripe of pink.
And so on….

Here is a picture showing 17 (light pink) through 35:

And finally, 33 to 50:

My earlier posts explained why I chose the pattern I did. I wanted the scarf to be reversible, but it’s not quite as easy to read as plain garter stitch stripes.

What’s next? A cuff-to-cuff cardigan! Only, I want to go higher than 50, so I decided to combine factors in one stripe — unless you have perfect powers of a number. Here’s a preview. I’m working on 33 now. (You can see that since 32 = 2^5, it’s 5 rows of blue.) It’s going to be flamboyantly bright, but I plan to wear my primes with pride!

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.

Ready to Start My Prime Factorization Scarf!

My yarn arrived tonight! 26 shades of Plymouth Encore yarn (on sale at yarn.com), so I can make a Prime Factorization Scarf that goes all the way up to 100!

Now, a lot of the shades ended up looking more alike than I hoped they would. But I can always hold those toward the end where they only turn up once. I also didn’t realize what large skeins I was getting — I will need to make a sweater after this, because I’m going to have all kinds of leftover yarn. But I can change the color scheme to keep it interesting.

My mission first: Decide which colors will be most dominant. I’m planning on black for 1 this time, but I’m going to swatch out some different combinations for 2, 3, 5, and 7, to decide how I like it. I was planning on red for 2, but it’s so bright — I might not want that much red in the scarf. And I really like the turquoise blue that came. So we shall see… I’ll make some small swatches before I try the actual scarf.

If anyone wants to play along and make a scarf with me, let me know! It might be a lot smarter to make this as a leftover-yarn project and use up old yarn, instead of buying all the same yarn. I wish I’d thought of that! Anyway, I will think in terms of using the yarn for a cardigan later. For now, I’m looking forward to playing with some swatches!

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.