Review of Really Big Numbers, by Richard Evan Schwartz

really_big_numbers_largeReally Big Numbers

by Richard Evan Schwartz

American Mathematical Society, 2014.
Starred Review
2014 Mathical Books Award Winner

Full disclosure: When I visited the National Math Festival and met Richard Evan Schwartz, I got all fangirl about his book You Can Count on Monsters and showed him my prime factorization cardigan. Of course I purchased his new book and got it signed. I am particularly proud of what he wrote: “To Sondy, Beautiful cardigan! It looks like we have a lot of the same ideas. Best wishes, Richard Schwartz”

And when I showed him my Pascal’s Triangle Shawl, he gave me the idea of making a new one using congruences mod n. Yes! I like the way this man thinks!

[In fact, in a weird side note, after reading his bio on the AMS webpage and learning he did his undergrad in math at UCLA, I find myself with a memory — which very well may be false — of taking a class with him as an undergraduate when I was a graduate math student at UCLA. I took a class (Number Theory?) with some undergraduates. That was in 1985-1986. An internet search shows he got his PhD in 1991 — so this is actually possible! And I remember a cocky and extremely intelligent student who looked a whole lot like he does now, only younger….]

You will not be surprised when I say I loved his new book! There are many books that deal with large numbers using analogies. A few from the beginning of this book include:

About 7 billion people live on Earth. If they all lined up, spaced about a foot apart, they would circle 50 times or so around the equator.

You could cram about 20 billion grains of very fine sand into a basketball.

100 billion basketballs would fill New York City roughly to the height of a man.

You could cover the service of the earth with about a quadrillion (10^15) exercise trampolines.

A quintillion (10^18) grains of very fine sand would just about cover Atlantic City, NJ, to a depth of 3 feet.

Speaking of a quadrillion and a quintillion, I’ve seen a few other books that explain the names for large numbers, but that’s only about the halfway point of this book! You know things are getting interesting right after the page where he shows

10^21 sextillion
10^24 septillion
10^27 octillion
10^30 nonillion
10^33 decillion

The next page says, “This system goes quite far out but I think that these names lose their novelty after the first 30 or so.” On that page we see spectators sleeping or reading a newspaper. Here’s the chart:

10^36 undecillion
10^39 duodecillion
10^42 tredecillion
10^45 quattourdecillion
10^48 quindecillion

On the page facing that one, he says, “Here, let me skip ahead some and show you the names of a few really big ones.”

10^78 quinquavigintillion
10^93 trigintillion
10^108 quinquatrigintillion
10^123 quadragintillion
10^153 quinquagintillion

Since this is still only about the halfway point of the book, you get the idea that when this book talks about really big numbers, it means really big numbers!

The author throws in questions about the big numbers – questions challenging enough to get even an adult with a math degree thinking.

There are more illustrations of the size of things, such as:

The sun, the true giant in the solar system, has about 4 nonillion (4×10^30) pounds of material.

We could continue counting up roughly by powers of 1000, moving out beyond the solar system to the stars surrounding the sun and eventually to galaxies and galaxy clusters, and superclusters, outward even to supercluster filaments and membranes…

but if you want to see some REALLY big numbers, we will have to move faster than that.

What is this author’s idea of REALLY big numbers? Well, before long, we get to a googol (10^100).

A googol atoms would fill the observable universe about 100 quadrillion times over.

You could say that a googol is so big that it rises beyond the merely astronomical.

He gives more illustrations of how big a googol is, but then says:

Yeah, a googol is a pretty big number.

But if you want to talk about REALLY big numbers then we’ll have to move on to a new level of abstraction. So, get ready, because the ride is gonna be pretty bumpy from here on in. But, remember, this book is supposed to be like a game of bucking bronco and you can always come back to it later if you fall off now.

All of this is accompanied by helpful and/or amusing computer cartoon illustrations.

So, then, the first abstract thing I want to tell you about is called plex.
When you “plex” a number, you write 1 followed by that number of zeros.
In other words, when you plex a number, you raise 10 to that power.

A googol-plex is 1 followed by a googol zeros, or, equivalently, 10 raised to the googol power.

A googol-plex is also 100-plex-plex and likewise 2-plex-plex-plex.

I love this page:

In my experience it is impossible to picture a googol-plex in concrete terms. Any attempt will scramble your brain. An implacable guard blocks the door to that kind of intuition.

But, let’s try to sneak by the guard and see what we can.

After some attempts at that, he says:

Mathematics gives us a language to name all kinds of things, but we can’t relate to everything we can name. If you want to think about REALLY big numbers, you have to give up the idea of picturing them….

Just let go of the reins and let LANGUAGE gallop on.

He even explains Recursion – “the trick of making something new by applying a simple rule over and over.”

Then he looks at some numbers plexed multiple times. I just love when he starts making up his own names.

Here is the number “one plexed one plexed two times times.” [The diagram here is very helpful.]

This number has no familiar name, so let’s call it “Fred.”

Let’s unravel “Fred” from the inside out.

“one plexed two times” is 1010, or ten billion, so “Fred” means “one plexed ten billion times.”

And here is “1 plexed FRED times.”
Let’s call this number “Big Jim.”

You may ask, “How big are ‘Fred’ and ‘Big Jim’?”

I’ll tell you honestly: I don’t know! Already, “1 plexed 4 times” makes a googol-plex seem microscopic, and each new plex is a quantum leap forward in size and abstraction.

To get to “Fred” you take 10 billion quantum leaps.
And “Big Jim” is “Fred” quantum leaps away.

And Richard Schwartz still doesn’t stop there! At the end of the book, he starts introducing new symbols. He shows a square that means “1 plexed N times.” Then he makes a new symbol that builds off of the square, and further symbols that build off of that.

Accompanied by diagrams with these new symbols, he says:

Once you get a taste for this kind of symbol, and the accelerated voyage it lets you take through the number system, nothing stops you from making more symbols.

Each new addition to the language is a chariot moving so quickly it makes all the previous ones seem to stand still.

We skip from chariot to chariot, impatient with them almost as soon as they are created.

Unhindered by any ties to experience, giddy with language, we race ever faster through the number system.

When you finally reach the last page, you will agree with the final line:

Infinity is farther away than you thought.

I’ve quoted extensively from this book, but believe me, quotes out of context pale in contrast with the actual book – I’m simply giving you a clue as to what you’ll find here. The illustrations, symbols, and diagrams all help lead the train of thought, or I should say ladder of thought, or better yet supersonic jet of thought.

I wish I had this book when my boys were young! My oldest, when he was in Kindergarten, liked to make up words for numbers “bigger than infinity.” I think the way this book is presented, the ideas of larger and larger numbers – bounded only by your imagination – would have inspired both my sons. I definitely plan to show this to kids at the library.

ams.org/bookpages/mbk-84
mathicalbooks.org

Buy from Amazon.com

Find this review on Sonderbooks at: www.sonderbooks.com/Childrens_Nonfiction/really_big_numbers.html

Disclosure: I am an Amazon Affiliate, and will earn a small percentage if you order a book on Amazon after clicking through from my site.

Source: This review is based on my own copy, purchased at the National Math Festival and signed by the author.

Disclaimer: I am a professional librarian, but I maintain my website and blogs on my own time. The views expressed are solely my own, and in no way represent the official views of my employer or of any committee or group of which I am part.

What did you think of this book?

Super Pi Day at City of Fairfax Regional Library

Today was Super Pi Day! 3.14.15, celebrated especially between 9:26:53 am and 9:26:53 pm.
(My son says it should be called Slightly-More-Accurate-Approximation-of-Pi Day, but I’m going with Super Pi Day.)

PiDay1

I got my geek on, with my Floating Point Pi Earrings from ThinkGeek, my Pi t-shirt from the Mathematikum in Giessen, Germany, Apple Pi socks, and of course my Prime Factorization Cardigan. I also brought in a Chocolate Angel Pi Pie.

My favorite comment was when I was explaining all this to one of the Library Friends. She said, “It’s good to see someone who loves what they do.” My translation: “You really are a Math Geek.” Yes, I am. Yes, I am.

Since a Children’s Used Book Sale was going on all day, we couldn’t use the meeting room, and decided to run an all-day Pi Day Scavenger Hunt.

Scavenger Sign

Participants only needed to answer 8 of the 10 questions, and we hoped they’d be pulled into the library to answer them. They were to write the answer on the pie piece, and get a prize when all the pieces were filled in. These were the questions:

1. For any circle, pi equals the circumference of the circle divided by what?
2. Albert Einstein was born on March 14th. What famous equation did he write?
3. Some people think we should celebrate Super Pi Day next year. Why is that?
4. What library number would you look under for books about pi?
5. What library number would you look under for books about pie?
6. List another irrational number.
7. What U.S. city has the zip code 31415?
8. Find a book in the library with “circle” in the title. List the title.
9. What letter comes after pi in the Greek alphabet?
10. Someone in the library is wearing a prime factorization sweater. What is her name? (Hint: You can google it.)

The prize was a wristband from thepidayofourlives.homestead.com celebrating Pi Day, along with some circular candies.

We ordered 57 wristbands. A hat came along with it, and none of my coworkers wanted to wear it, so I added it to my Pi gear:

PiDay2

Response was wonderful! By the end of the day, we’d given out 56 wristbands! I loved watching the kids working to figure out the answers. And I’ve never gotten the chance to talk to so many people about my prime factorization sweater all on the same day!

I admit this family, with Super Pi, Pi a la mode, and a Pi-rate, were my favorites:

Customers

But overall, it was simply a huge success!

I was going to fill in the answers, but instead, why don’t you add them in the comments if you know the answers? 🙂

Happy Happy Slightly-Better-Approximation-of-Pi Day!

Review of 100 Bears, by Magali Bardos

100_bears_large100 Bears

by Magali Bardos

Flying Eye Books, 2013. 100 pages.

Counting books that go all the way up to 100 are something special. This one is a little bizarre and a little random, but I found it charming and would want it for my kids if they were still learning to count. It’s too long for a storytime, but I can imagine kids poring over it at home the way my son spent hours with the Where’s Waldo books when he was a child.

As you will guess by the 100 pages, there’s basically a number on each page of this book. But it tells a general story as it counts, helped along by the pictures. The story is not a terribly coherent one, but it generally makes sense, and you see the same six bears and the same eight hunters throughout the book.

The book begins:

1 forest
2 mountains
3 bears on each mountain
4 paws in the air
Eating honey, 5 times a day
6 bears in the forest
7 mushrooms
8 hunters
9 gunshots
10 butterflies flutter by … the bears seize the chance to sneak away

The rest of the book follows their strange journey with the hunters sometimes being chased and sometimes chasing them and sometimes just, apparently, partying.

Sometimes the objects counted aren’t particularly relevant to the story, like “13 cats meow… 14 smoking chimneys.” Most of the time there are objects to count, even when it gets to high numbers like “62 windows on the way home… 63 travellers.” Sometimes the author just gives the number as a numeral with nothing to count, such as “Flying over route 25” (with a road in the shape of the numeral 25), “To go and celebrate the 31st” (just a page-a-day calendar shown), or “off they go to number 41” (a house number). The 37 and 38 page fudges by saying “37 or 38 bits of confetti… give or take.” (This is actually rather brilliant or totally unfair, depending on your perspective.)

There are a few ways you can tell the book was originally published in Europe, and not a lot of effort was made to Americanize it. On the picture of the 15th floor, there’s a light on in what American’s would call the 16th floor (since Americans call the ground floor the first floor). The bears get sick with “fevers of 39 degrees C,” and weights are given in kilos, and heights in centimeters.

But while the story doesn’t exactly hold together, it does circle back to “100 trees… The forest.” And I find it the delightful sort of book you can look at again and again, examining details and, of course, counting.

flyingeyebooks.com

Buy from Amazon.com

Find this review on Sonderbooks at: www.sonderbooks.com/Picture_Books/100_bears.html

Disclosure: I am an Amazon Affiliate, and will earn a small percentage if you order a book on Amazon after clicking through from my site.

Source: This review is based on a library book from Fairfax County Public Library.

Disclaimer: I am a professional librarian, but I maintain my website and blogs on my own time. The views expressed are solely my own, and in no way represent the official views of my employer or of any committee or group of which I am part.

Crazy 8s Math Club

bedtime_math

On Thursday, my Prime Factorization Cardigan was featured on Bedtime Math!

This thrilled me, since I’ve been excited about Bedtime Math ever since I first heard about it. I love their mission — showing kids how much fun Math is and making it a regular part of their bedtime routine.

And, I recently started coaching a Crazy 8s Math Club.

Bedtime Math sent us most of the materials (except easily obtainable things) and instructions for eight different club activity sessions. This week, I *finally* remembered to take some pictures. The kids were flinging marshmallows with catapults and measuring how far they flew. I added in some activities with aim at the end, assigning points to different achievements. It tends to get a little chaotic, but the kids seem to have a great time.

Marshmallow1

Marshmallow2

Marshmallow3

Marshmallow4

Funny how exhausted I was at the end!

Bedtime Math has two books out with life-related math explorations, Bedtime Math and Bedtime Math 2.

A huge thank you to them for the work they do and for providing so much fun to the kids at our library!

Oops! Can you find the mistake?

Wearing cardigan1

Oops! Today I realized I had used the wrong shade in one of the rows of my prime factorization cardigan. I remembered I had discovered that in the process of knitting, and had planned to go over the offending line with duplicate stitch. But I forgot — so now I think I will use it as a puzzle. Can you spot the number that is out of place?

You’ll definitely need a closer look at the cardigan.

Who will be the first person to spot the error? (You can use the comments to inform me.) This person is almost as geeky as me! 🙂 Though at least I can restrain myself from taking apart the cardigan. There was an error in my Prime Factorization Sweater — but it was one of five factors of a number (probably 72), so it only involved four stitches in the wrong color. I was able to pick them out, then reinsert the right color with a yarn needle.

Oh, I should say that the error is not in row 48, which is 2 x 2 x 2 x 2 x 3. I didn’t want to have the pink thread loose over all four blue stitches, so I twisted the yarn after two stitches — and it ended up showing up a bit on the front, though not as much as an actual wrong stitch.

No, the error is a matter of using the wrong shade in one of the stripes. The result would be far too large a number for this sweater. And now I can use it to find out who is paying attention. 🙂

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.

My Prime Factorization Cardigan

I did it! More than two years after beginning, I have finally completed my Prime Factorization Cardigan!

Wearing cardigan1

Here’s how it works! The stripes each represent a counting number. They go from left to right, cuff to cuff. 1 is black, the background color (which is a factor of everything). Then each prime gets a new color. 2 is blue; 3 is pink; 5 is yellow; 7 is purple….

Composite numbers get the combination of colors for their factors. 6 = 2 x 3, so it’s alternating blue and pink. 10 = 2 x 5, so blue and yellow. 12 = 2 x 2 x 3, so two stitches of blue followed by one of pink….

Perfect powers get multiple rows. 4 = 2 x 2, so two rows of blue; 8 = 2 x 2 x 2, so three rows of blue; 9 = 3 x 3, so two rows of pink. I think my favorite is 36 = 2 x 2 x 3 x 3, so I did two rows of alternating blue and pink.

I put labels in one picture, to give the pattern:

Labeled Cardigan1-18

As for details, I used Plymouth Encore yarn, 75% acrylic, 25% wool — it is not expensive and comes in many colors. I looked online for a pattern knitted cuff-to-cuff, and found this Rainbow Lace Jacket. I of course changed the colors. I knitted the stripes in garter stitch, and the rows in between the stripes in black stockinette.

And now for more pictures! First, an overall look at the sweater again:

PF Cardigan Front

And with the arms down:

PF Cardigan arms down

And the back: (I decided to make the numbers go two-dimensionally across the sweater, from cuff to cuff. So the back is a mirror of the front.)

PF Cardigan Back

And here’s more detail, Numbers 17 to 32 (The powers of 2 are easy to spot! They are the multiple rows of blue.):

Cardigan17-32

Then Numbers 26 to 38:

Cardigan26-38

34 to 47:

Cardigan34-47

41 to 58:

Cardigan41-58

51 to 63:

Cardigan51-63

And finally, 64 to 78:

Cardigan64-78

There you have it! The latest in my prime factorization knitting adventures. Let’s see, I feel compelled to summarize what I’ve done.

It began with the Prime Factorization Sweater.

prime-factorization-sweater

Then when that became wildly popular on the internet, I made a Prime Factorization T-shirt. (These are available for sale, by the way.)

Twitter Profile

I experimented with stripes when I made my Prime Factorization Scarf, and planned out how to do this cardigan.

Prime Factorization Scarf

Then my siblings were expecting babies. For my sister’s baby, I knitted a Coded Blessing Blanket.

Blessing Blanket

For my brother’s baby, nothing but a Prime Factorization Blanket would do.

prime_factorization_blanket

Which got me going on a Pascal’s Triangle Shawl.

PascalsTriangleShawl

Which got me to start another, prettier one (Still not finished).

Pascals Colors

And brings me back to the Prime Factorization Cardigan!

Wearing cardigan hands down

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.

Review of Think Like a Freak, by Steven D. Levitt & Stephen J. Dubner

think_like_a_freak_largeThink Like a Freak

The Authors of Freakonomics Offer to Retrain Your Brain

by Steven D. Levitt & Stephen J. Dubner
read by Stephen J. Dubner

HarperCollins, 2014. 5 ½ hours on 5 compact discs.
Starred Review

I reviewed Freakonomics back in 2005. It presented a different way of looking at problems than common “wisdom” suggests. In this book, Think Like a Freak, the authors not only show you problems they have solved, but they offer tips and suggestions for how you can solve problems the Freakonomics way.

As well as giving problem-solving tips, they also give you advice on persuading people who don’t want to be persuaded. One piece of advice is to tell stories. And this book abounds with stories and examples for every principle given. Even if you don’t take their advice, you’ll find the stories entertaining. But I’m guessing that you will also find them persuasive.

For example, to go with the tip of having gardens weed themselves, we’re told why Nigerian scammers are actually smart to mention Nigeria. It weeds out all but the very most gullible people.

In light of the principle that we should get rid of the idea that quitting is always bad, the authors tell about a huge experiment they ran, offering to make people’s decisions for them with a coin flip.

Those are just a few of the entertaining and informative examples, which are presented in an engaging way and may get you looking at the world differently. Unlike many authors, this one’s voice is as mellifluous as an actor’s. I found myself looking forward to my commute to hear more of what he had to say.

freakonomics.com
harperaudio.com

Buy from Amazon.com

Find this review on Sonderbooks at: www.sonderbooks.com/Nonfiction/think_like_a_freak.html

Disclosure: I am an Amazon Affiliate, and will earn a small percentage if you order a book on Amazon after clicking through from my site.

Source: This review is based on a library book from Fairfax County Public Library.

Disclaimer: I am a professional librarian, but I maintain my website and blogs on my own time. The views expressed are solely my own, and in no way represent the official views of my employer or of any committee or group of which I am part.

Review of Mysterious Patterns: Finding Fractals in Nature, by Sarah C. Campbell

mysterious_patterns_largeMysterious Patterns

Finding Fractals in Nature

by Sarah C. Campbell
photographs by Sarah C. Campbell and Richard P. Campbell

Boyds Mills Press, 2014. 32 pages.

I love it when an author takes a fairly complicated mathematical concept and makes it picture-book simple. And in this case, she makes it look easy. (I’ve taught math. Trust me; it’s not easy to explain things simply.)

This book explains fractals and how they appear in nature – with plenty of photographs illustrating the concepts every step of the way.

Every fractal shape has smaller parts that look like the whole shape. Fractals are everywhere in nature, and can form in many different ways. A tree is a fractal. It starts with one shape that changes in the same way over, and over, and over again.

This tree [There’s a diagram below this paragraph.] starts with a stem, which splits into two branches, which each split into more branches, until the smallest branches split into twigs.

Many smaller parts of the tree – large branches with smaller branches and twigs – look like the whole tree, with its trunk and branches and smaller branches.

I already knew about fractals. I’ve seen mathematical formulas for them. I’ve even begun knitting a Sierpinski Triangle Scarf. However, after reading this book, I’m noticing fractals around me far more than ever before.

I think the same thing will probably happen with kids who read this book – and this book that includes no numbers higher than five may even inspire some child to find out more about the beautiful mathematics behind it.

sarahccampbell.com
boydsmillspress.com

Buy from Amazon.com

Find this review on Sonderbooks at: www.sonderbooks.com/Childrens_Nonfiction/help.html

Disclosure: I am an Amazon Affiliate, and will earn a small percentage if you order a book on Amazon after clicking through from my site.

Source: This review is based on a library book from Fairfax County Public Library.

Disclaimer: I am a professional librarian, but I maintain my website and blogs on my own time. The views expressed are solely my own, and in no way represent the official views of my employer or of any committee or group of which I am part.

My Pascal’s Triangle Shawl

I finished my Pascal’s Triangle Shawl!

I’m very happy with how it turned out!

In fact, I was disappointed by how the top edge curled — until I wore it, and it forms into a sort of collar! Perfect!

I already explained the math behind the shawl in great detail.

So now I’ll just say that this is a color-coded representation of Pascal’s Triangle, with a color for each prime factor, and each number represented in a diamond with its prime factorization shown.

In Pascal’s Triangle (at least when it’s shown with the point down, as above), each number is the sum of the two numbers beneath it, with 1 on all the ends. So 1 is white in my shawl.

The color scheme I used for the rest was:

2 is turquoise.
3 is yellow.
5 is red.
7 is purple.
11 is pink.
13 is light blue.

I took it up to the 15th row. After that, entries had more than 6 factors, so it wouldn’t be as easy to get them all in.

Take a moment to enjoy the flow. 🙂 Each time we get to a prime, every number in that row has that prime as a factor.

And the next row has that prime factor in all but the ends, and so it continues, forming an inverse triangle of that color. (This is because of the distributive law, as I explained in my earlier post.)

Looking at this shawl simply makes me happy. And I’m tremendously proud of it. I think it’s safe to say that this is the first Pascal’s Triangle Shawl ever knitted. 🙂

But it won’t be the last! As I began the shawl, I wasn’t sure it wasn’t a bit too garish with all the bright colors right next to each other. At least in the prime factorization blanket, I had rows of white in between the numbers. Though now that it’s finished, I completely love it.

Anyway, I decided to make a second one — this time using shades of pink and purple, with only subtle differences, going from light to dark. The first one will be easier to use for explaining the math, but I think the second one may be prettier.

And last night, I got another idea about how to make the second one different. Instead of having blocks of color for each factor, I’m planning to alternate rows. I think that will blend the colors as you look at the shawl — and I think it will be very beautiful! Stay tuned!

My posts on Mathematical Knitting and related topics are now gathered at Sonderknitting.

Review of Bedtime Math, by Laura Overdeck, illustrated by Jim Paillot

Bedtime Math
by Laura Overdeck

A Fun Excuse to Stay Up Late

illustrated by Jim Paillot

Feiwel and Friends, New York, 2013. 86 pages.
Starred Review
2013 Sonderbooks Stand-out: #6 Children’s Nonfiction

I already talked about Bedtime Math on my blog, when it only referred to a website. Then I used the book in my Every Child Ready to Read program, “Fun with Math for Parents and Preschoolers.”

I am tremendously excited about Bedtime Math, because I discovered how wonderful it is years ago, when my second son was about five years old. I’m not sure how it started, but he began asking for math problems at bedtime. (It might have been when I told him that when he turned six, his age plus his age would equal his brother’s age, and his age *times* his age would equal my age. His next question was, “What’s times?” One week later, his brother asked him “What’s 16 times 4?” and he figured out the answer in his head!)

Anyway, this started a stretch where I’d make up math problems for him at bedtime, after reading three books, when he was tucked in and cozy in bed. He learned the magic words I was NOT able to resist that would extend bedtime on and on: “Just one more math problem, Mommy, please!”

The problems in Bedtime Math are much better and more fun than the simply numerical problems I made up for my son. Each two-page spread has a fun scenario, followed by related math problems, one for “wee ones” (involving counting), one for “Little kids,” and one for “Big kids.” You can also get problems from their website or app.

The categories used are “Exploding Food,” “Wild Pets,” “Extreme Vehicles,” “Sports You Shouldn’t Try at Home,” and “Really Odd Jobs.”
For example, after telling us about squirt bottles for ketchup (“Squirting ketchup is also more fun than throwing a tomato: While a tomato smacking into something might explode and make a mess, ketchup already is a mess.”), here are the problems listed:

Wee ones: If you squirt 3 squirts of ketchup on a hot dog, and then 1 more squirt on your friend’s head, how many squirts did you fire off?

Little kids: If you line up some burgers and squirt ketchup on the 1st burger, then every 3rd burger after that, which burger in the lineup is the 4th burger to get squirted?

Big kids: If you squirt 2 cups of ketchup, and each cup used 14 tomatoes, how many tomatoes’ worth of ketchup did you just squirt?

I am excited about Bedtime Math! May the Math Madness spread! Laura Overdeck says in the Introduction:

Bedtime Math’s goal is simple: to make math a fun part of kids’ everyday lives, not just something found only in homework assignments. Math should be as beloved as the bedtime story….We never hear people say “Ewww, a book at bedtime?!” Likewise, there’s absolutely no reason to say that about math. Numbers are beautiful, and kids love attention. Bedtime Math just puts the two together. With that, let the games begin.

bedtimemath.org
mackids.com

Buy from Amazon.com

Find this review on Sonderbooks at: www.sonderbooks.com/Childrens_Nonfiction/bedtime_math.html

Disclosure: I am an Amazon Affiliate, and will earn a small percentage if you order a book on Amazon after clicking through from my site.

Source: This review is based on a library book from Fairfax County Public Library.

Disclaimer: I am a professional librarian, but I maintain my website and blogs on my own time. The views expressed are solely my own, and in no way represent the official views of my employer or of any committee or group of which I am part.